The PLGA/Imiquimod combination is 70% PLGA and 30% Docetaxel.

Pneumococcal Protein Specific IgG ELISA: Developed in collaboration with Dr. Moon Nahm, University of Alabama.

In Vitro ELISA and **DIONEX HPLC** methods to quantify polysaccharide levels in PRINT nanoparticle formulations.

OPK Assay: A robust and reliable method for quantifying several antigens in PRINT formulations.

Lyophilization of PRINT Formulations: Does not diminish the stability of the formulations.

In Vivo Neutralization Assay: Evaluates protection against multiple bacterial species.

PLD IgG: Robust neutralizing antibodies were generated and shown to be functional by neutralizing hematolytic activity of PLY.

Non-antigen controls were shown to have statistically significant increases in IgG response.

Immunogenicity of Antigens: Maintained inPrint formulations for IgG response.

Stability Analysis: Robust PLD IgG antibodies were generated and shown to be functional by neutralizing hematolytic activity of PLY.

Two Non-adjacent bivalent formulations showed statistically equivalent responses to Prevnar 13 when tested individually for IgG response against each antigen.

PRINT Platform: Demonstrates a wide-ranging multi-antigen formulation, manufacturing, and analytical capability.

Quality by Design: Enables high-throughput quality control and process optimization.

Scalable Manufacturing Platform: Proprietary technology allows for efficient production of multi-valent vaccines.

Minimal Facilities Burden: Small footprint, low CapEx equipment (denatured or soluble PLD alone).

PRINT Technology Offers the Flexibility to Target Humoral and Cellular Immunity Towards Pneumococcal Specific Targets.

PRINT Is Compatible with Numerous Types of Pharmaceutical Materials, Including Small Molecules and Biologics.

Pneumococcal Polysaccharide Vaccine Development Pathway.

PRINT Pneumococcal Polysaccharide Vaccine Elicits IgG Response in Rabbits.

Lyophilization of PRINT Formulations does not diminish the immunogenicity of antigens.

Universal Polymer Base manufactured to ensure scalability and ease of purification.

Filtration Recovery Yield > 65% for effective primary, secondary immunization.

Simplified assembly of multiple antigens ensures accessibility to circulating antibodies.

Multiple copies of antigen incorporated allows for effective primary, secondary immunization.

PRINT Is Compatible with Numerous Types of Pharmaceutical Materials, Including Small Molecules and Biologics.

PRINT Platform: Demonstrates a wide-ranging multi-antigen formulation, manufacturing, and analytical capability.

Quality by Design: Enables high-throughput quality control and process optimization.

Scalable Manufacturing Platform: Proprietary technology allows for efficient production of multi-valent vaccines.

Minimal Facilities Burden: Small footprint, low CapEx equipment (denatured or soluble PLD alone).

The PRINT platform: Demonstrates the effectiveness of downstream sterile filterability and lyophilization of PRINT formulations.

The PRINT manufacturing process allows for rational design of next generation multivalent vaccines to address developing world needs.