

MICROFLUIDIC DEVICE FOR SPERM CHEMOTAXIS

Shweta Bhagwat^{a*}, Vibha Jayaraj^{b*} Priyanka Parte^a and Sameer Jadhav^b ^a National Institute for Research in Reproductive Health, ^b Indian Institute of Technology Bombay, India * Equal contribution

1. INTRODUCTION

Spermatozoa follows a concentration gradient of the oocyte chemoattractant

CASA(Computer Assisted Sperm Analyzer) for snap shot of sperm motility - Does not allow real time quantification

Classical methods like Zigmond and Dunn chamber - No stable gradient

Aim: To develop a microfluidic device to generate a stable linear gradient for sperm chemotaxis

4. RESULTS **3. METHODOLOGY**

Simulation data – Concentration gradient

Zigmond chamber

Microfluidic chamber

low a (chemo) —

cel

2. OBJECTIVES

- 1. Develop a microfluidic device that can generate linear gradient
- 2. To track single sperm chemotaxis in progesterone (P_4) gradient

METHODOLOGY

Movement of sperm under the influence of P₄ was analysed using ImageJ software and the Manual Tracking plugin.

Experimental data – Concentration gradient

Tracking of Sperm in P₄ gradient

Microfluidic Device simulation

FEM simulation using Comsol Multiphysics Incompressible navier stoke Convection diffusion equation

Inlet concentrations : 1 and 0 mol/m³

Diffusion coefficient : 1E-10 m²/s

Contact zone length : 0, 5,15, 25 and 50 µm

Schematics of sperm motility kinetics

VAP: Smoothed Path Velocity (microns/sec) VCL: Track Velocity (microns/sec) **VSL: Straight Line Velocity (microns/sec)**

4. RESULTS

Simulation data - Concentration profile

Sperm track was generated using Manual tracking plugin for a) Ascending gradient, and b) Descending gradient

0% difference in flow

50% difference in flow

5. CONCLUSIONS

- Sperm track in ascending gradient is linear as compared to that in the descending gradient.
- Sperm velocity significantly increased (p=0.006) in ascending gradient as observed in vivo.

6. EXPECTED OUTCOME

Development of a microfluidic device that could be applied to:

- Study sperm chemotaxis
- Select good quality sperm for IVF

•Acknowledgments: The authors are thankful to CEN IITB for fabrication facility and IRCC Healthcare seed grant for the funding.